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ABSTRACT

This work concentrates on a method for real-time collision detection and

how to resolve that collision when it has occurred. The results of this effort are

only a small part of the overall system, NPSNET. The collision detection mecha-

nism is integrated into the overall system to create realism involving collisions.

The original NPSNET system did not contain a collision detection and response

module. The collisions to be detected include explosions such as missile contact

with a vehicle, one vehicle running into another such as a jeep and a tank, and ter-

rain modifications such as an artillery round hitting the ground and creating a cra-

ter. The overall system complements the DoD large-scale networking system,

SIMNET. The NPSNET system is portable and able to run on any graphics work-

station that has the GL libraries.
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I. INTRODUCTION

This work covers the collision detection and response portion of a new battlefield

simulation package, NPSNET [Zyda91]. NPSNET is a commercial workstation-based

version of the older, more expensive system, SIMNET [Garv88]. NPSNET is programmed

utilizing off-the-shelf IRIS graphics workstations rather than the platform specific nodes of

SIMNET. This new system provides a real-time interface with the user in the physically-

based world model.

A. BACKGROUND

NPSNET is a real-time vehicle and battlefield simulator. It uses databases and formats

similar to those found in SIMNET, the Department of Defense (DoD) large-scale

networking simulator. Users of NPSNET are able to drive many different types of vehicles

such as tanks, jets, ships, helicopters and armored personnel carriers. There are also a

number of humorous objects that are available for the more adventurous, such as helo-

cows, wishbones, hamburgers and even attack tomatoes. Up to 500 of the vehicles/objects

can be driving in the world at one time. The 500 vehicles can include autonomous vehicles

that react when fired upon by either returning fire or fleeing the area. These three

dimensional (3D) icons move around in the computer world that is based on the terrain at

Fort Hunter-Liggett, California. There are trees, bushes, rocks, roads, watertowers,

buildings and much more that are on the rolling hills and valleys for the virtual Fort Hunter-

Liggett. Depending upon the model of IRIS being used, the user can select to use texturing,

fog and even haze. The system is networked, via Ethernet, to allow several players to

interact. A two dimensional (2D) map can be displayed that shows the position and tracking

of all the players in the 50 kilometer square. This map displays the direction and viewing
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triangle of the driven vehicle as well as the position and movement of the remaining

vehicles. The statistics and data concerning the driven vehicle are displayed in a window at

the top of the screen. Speed, pitch, roll, number of remaining rounds and remaining fuel are

a few of the statistics shown. Players control their chosen vehicles through several interface

devices to include a button/dialbox, keyboard and SpaceBall.

The six degree of freedom SpaceBall is one of the most versatile devices available and

allows for control of movement in 3D. The pick button on the SpaceBall fires the

appropriate round associated with the vehicle being driven. Pressure applied to the

SpaceBall adds to the thrust in the applied direction. The more thrust applied the faster the

change. This allows the player to turn, move forward, backward, up and down very quickly.

The system runs in real-time. Consequently, reactions to events, not just the detection of

them, have to take place very quickly also. This includes following terrain contours,

reacting to input from the user and responding to changes in the 3D world. As long as no

collision occurs, the displays on the original NPSNET, NPSNET- 1, are realistic.

B. PURPOSE AND GOALS OF WORK

NPSNET- 1 has no collision detection, so collision response is not done. Without

collision d,,ction and response the realism of NPSNET-1 is poor. Even with texturing,

environmental effects and realistic looking vehicles, the virtual world falls apart the first

time one vehicle drives through another. This work places collision detection and response

into NPSNET-2. Many of the scenarios in NPSNET- 1 are not realistic since a user can drive

through walls, trees, other vehicles and any object that is encountered. This work,

implemented in NPSNET-2, detects and responds to collisions between objects in real-

time. This is difficult due to the computational intensity of collision detection. Speed is vital

to detection as well as a realistic response. The detection portion is fast to allow the time

need d to respond properly. Response is dependent upon physically-based modeling.

Physically-based modeling is the process of giving objects the characteristics they

actually possess and making those objects react to the forces that influence them in the real
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world. Transient events are those inputs that act upon the models to change the

characteristics of the models. For example a missile impacting upon a tank would definitely

change the tank's representation. Characteristics include things such as: spring forces,

moldability, rigidity, weight, gravity, explosive potential and much more. Transient events

include collisions, explosions, terrain modifications and anything else that affects the

physically-based model of either the world itself or the individual objects within that world.

There are physically-based models on the market with realistic texturing, collision

detection and response. However, very few are done in real-time.

Achieving real-time collision detection and response is the primary goal of this work.

Secondary goals include compatibility with SIMNET, realism in the responses and

compatibility with future hardware upgrades. Detection of all collisions is another

secondary goal. This goal may not be necessary though since realism can be achieved by

only responding to those collisions that occur within the viewing area of the user.

C. BREAKDOWN OF WORK

Chapter II covers previous attempts to solve the problem of collision detection and

response including the one it complements, SIMNET. Other solutions to this problem are

covered including interpenetration of spheres and boundary boxes, physically-based

modeling and simple spring forces.

Chapter III covers a description of the program. Several steps have been taken to limit

the number of objects checked for a collision. These are also discussed in Chapter III. The

implementation of the program is discussed along with the various algorithms and thought

processes that went into its design. Efficiency and data structures are cited along with

various examples of the code itself.

Chapter IV covers the results of this work. Chapter V covers the conclusions. This

chapter lists requirements and suggestions for future work in the area of real-time collision

detection and response for NPSNET-2.
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II. OTHER RELATED WORKS

This work covers collision detection and response in real-time. There are several

papers that cover collision detection and response but not in real-time: [Moor88], [Hopc83]

and [Terz87]. There are also a few works that cover it in real-time: [Garv88], [Hahn88] and

[Uchi83]. However, none of these works use a commercial workstation-based system for

hardware.

A system for an interactive battlefield simulation is SIMNET [Garv88]; however, it is

prohibitively expensive and only runs on a particular set of hardware. Additionally,

SIMNET requires specific hardware for each type of vehicle whereas NPSNET uses one

general purpose simulator for all vehicles. SIMNET has a collision detection and response

system which is only a small part of the overall system just as this work is only a small part

of the NPSNET system. NPSNET complements SIMNET as a general battlefield

simulation system; however, there are other existing simulation and collision detection

papers which approach the problem of collision detection and response specifically.

An example is a paper by Moore and Wilhelms [Moor88]. It discusses the issue of

collision detection and response very specifically and goes into detail about both flexible

and solid surfaces. The algorithm presented in this paper tests to see if the points of one

object are inside the points of another, and if they are, a collision has occurred. Two

algorithms for collision detection are given in Moore and Wilhelms' paper, each of which

is broken down into two parts. One part tests for planar penetration, and the other part tests

for edge penetration. The results of both algorithms are then passed to a collision response

algorithm. The algorithm then determines an appropriate response to the collision. The

response concentrates on giving new linear and angular velocities to the objects involved.

The authors take two approaches: one for objects at rest with forces acting upon them, such
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as gravity and mass and a second approach for moving objects. The at rest objects respond

with spring-like reactions while the moving objects have to be analyzed to determine the

appropriate response. Physically-based modeling is discussed and partially implemented.

The paper's final solution to the problem of collision response is to use a dynamic approach

which can access either the spring force or the analytical method. The biggest drawback to

the paper is that the implementation is not done in real-time.

Another paper is Collision Detection in Motion Simulation by Uchiki, Ohashi and

Tokoro [Uchi83]. It uses an independent process, a space occupancy method, which detects

when spheres, which enclose objects, occupy the same space. Each object is sent a message

whenever it tries to occupy a space that is already occupied by another object's sphere.

Consequently, message passing is the key to its success. It has an additional feature that

makes it unique in that it also passes the point of the collision to the collision detector. This

is an important bit of information that is essential to collision response. To properly react

to a transient event, the collision point must be known. For example, the system should

crumple on the right side if the right side is hit. Again this is a characteristic of physically-

based modeling and one that must be preserved in order to accurately and realistically

display interaction among objects in the physically-based world.

The paper by Hopcroft, Schwartz and Sharir [Hopc83] provides an algorithm for

determining whether a collision has occurred between two objects in three dimensional

space. The paper uses spheres to determine intersections between objects. Every object

within the paper's model is enclosed within a sphere. The basis of the paper is to determine

if any two of those spheres intersect. It also provides a computational complexity analysis

for the algorithm along with the mathematics involved in calculating the intersection. The

entire approach of the paper is mathematical in nature. Hopcroft's paper also contains the

data structures used to create the efficiency of their method. Sorting and placement of the

sphere locations and radii are an important part of the method and contribute greatly to the

results obtained.
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In Hahn's paper [Hahn88] an overview and a limited implementation for a computer

animation system to model 3D moving objects is presented. Hahn's paper goes into detail

on the physically-based modeling of the objects and the methodology for creating realistic

movement of those objects. The paper provides a method for computing the motion of

objects by merging not only dynamics but kinematics as well. It allows for interaction

between objects that includes collision detection and response. If a collision has occurred,

then the collision point along with the backup vector is sent to an analyzer which

determines the app ipriate response. The response is limited to a bouncing effect at a new

velocity and angle. This is the major shortfall of the paper and where the physically-based

modeling stops. Responses are built into a table of script files and are limited so that a true

response may not be given but whatever comes closest to matching the pre-programmed

response.

In Elastically Deformable Models by Terzopoulos, et al [Terz87] the problem of

deformable objects is discussed. These are objects which would not normally get

penetrated but would respond by giving in or bending away from the collision point.

Objects of this type include things like paper, rubber and other flexible materials. The paper

deals exclusively with deformable objects just as its title states. Elastically Deformable

Models does demonstrate what occurs in response to different types of forces, constraints

and other objects. Their paper promotes the use of dynamic models which react to transient

events based upon the principles of applied physics.

A predecessor to NPSNET is the moving platform simulator (MPS) series. It has three

versions, and versions two (MPSII) [Winn89] and three (MPSIII) [Chee90] each have

collision detection. The detection consists of a 2D check for nearness of other vehicles or

platforms. If a platform comes within a certain range of another platform then both

platforms are killed. There is no check for non-platforms, such as trees, bushes, etc.

Additionally, the only response is to kill the vehicles, not damage them or bounce them off

of each other.
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The fundamentals of detecting collision points are contained in the book An

Introduction to Ray Tracing [Glas89]. This book covers not only the fundamentals but the

specifics of finding intersection points for collisions. Finding the intersection points is

discussed in detail in Chapter III of this work.

Although, several other programs and systems exist that perform collision detection

and response, few do so on SGI IRIS graphics workstation hardware and none do it in real-

time. SIMNET comes closest to meeting these objectives but works only on its own

particular set of hardware.
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III. PROGRAM IMPLEMENTATION

A. OVERVIEW

NPSNET-2 runs on any graphics workstation with the GL libraries but has been

developed on the IRIS workstations, including the IRIS 4D/120 GTX, 4D/70 GT and the

4D/240 VGX. It is written in Kernighan & Ritchie C [Kern78]. Input and output devices

that are supported include the keyboard, button/dialbox, mouse, screen and SpaceBall. The

NPSNET system involves real-time response in a battlefield simulation using land, sea and

air forces. The system is networked, via Ethernet, to allow for multiple players to interact.

This work performs realistic animation of explosions involving direct and indirect hits by

ordnance; collisions of vehicles with other vehicles and terrain features; and terrain

modifications such as craters and destroyed trees. NPSNET is relatively inexpensive in

comparison to SIMNET. Moreover, NPSNET uses one general purpose simulator to

operate on the entire battlefield while SIMNET uses a different type of simulator for each

different type of vehicle/platform. This allows any user to sit down at one terminal and

become any vehicle in the simulated world that he wants to. If the user c!hanges his mind at

any time about his choice of vehicles, he can change by simply pressing a button rather than

switching hardware. Due to the generic application of the collision detection routines,

NPSNET-2 continues to perform in real-time regardless of the simulated vehicle.

B. WORLD SEGMENTATION

NPSNET's virtual world is divided up into gridsquares of a constant size based upon

the actual terrain features of the database from the SIMNET Database Interchange

Specification (SDIS) [Lang90]. The gridsquares are small, 125 meters square. Associated

with each gridsquare are both fixed and moving objects.
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C. COLLISION DETECTION

In order to obtain a realistic virtual world there must be collision detection. Vehicles

passing through other vehicles and objects make the world unrealistic. A possible solution

to this problem would be to prevent collisions by bouncing objects off of each other at all

times, but that is not very realistic either. Another possible solution is to always destroy the

objects involved in collisions. A third option is to combine these two solutions along with

varying stages of damage to involved objects depending upon the physical characteristics

of the involved objects. That is the approach taken by this work.

1. Against Fixed Objects

The algorithm for collisions with fixed objects constantly checks moving vehicles

to determine if a collision has occurred. The position of the moving vehicle is updated

constantly. Consequently, as soon as a vehicle is moved and its position is updated, it is

checked for a collision. In order to maintain a real-time speed, the scope of the collision

detection is severely limited. This is done in two basic ways. The first is a collision with

fixed objects is checked only if the moving vehicle is below a threshold height. This is due

to the fact that all fixed objects are in some way attached to the terrain and thus below that

threshold height. If it is below that height, it runs through a linked list of fixed objects which

are attached to the current gridsquare. This is a quick check since there are relatively few

fixed objects in any one gridsquare (Table 1).

Associated with each object in the linked list is a radius that is used for its

bounding sphere. If that bounding sphere is interpenetrated by the bounding sphere of a

moving object, then a collision occurs. Depending upon the mass of the fixed object, there

are various outcomes to the collision. A large massed object is much less vulnerable to

damage than a small massed object. Consequently, the larger the mass of the fixed object,

the less damage it suffers, and the more damage the moving object suffers. The opposite is

also true. If there is no collision between the fixed objects in the gridsquare and the moving

object, the second collision check is performed.
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Minimum per Gridlsquare..................................... 0

Maximum per Gridsquare .................................... 18

Average per Gridsquare,...................................... 3.9

OBJECT TYPES TOTAL

Trees............................................................ 30,813

Bushes ......................................................... 9,422

Telephone Poles............................................... 54

Buildings ....................................................... 3

Watertowers ................................................... 1

Other Man-made.............................................. 5

Other Natural.......:........................................... 5

Total for Database ............................................ 40,303

Total 125 Meter Gridsquares............................... 160,000

DISPERSION OF FIXED OBJECTS
TABLE 1
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2. Against Moving Objects

The second collision check is for other moving objects. This is more complicated

since any other moving vehicle or object has the potential for colliding with the vehicle we

are checking. The potential exists for 500 vehicles including their missiles and other

ordnance to be checked for collision. Consequently, the scope of the collision detection

range has been limited in several ways.

As soon as each vehicle is moved, its position is checked against the position of

the surrounding vehicles. If the X or Z position of any other vehicle is within 100 meters of

the checked vehicle then those two vehicles are sent to the second level check. At the

second level check the distance between the two vehicles is calculated. If this distance is

less than the combined radii of the two vehicles then a collision has occurred and the third

level collision check is done. Ray tracing, the third level check, determines the actual point

of collision if there is one.

If worst case numbers are used to determine the implicit range limitations of all

vehicles, it can be shown why this culling is fairly accurate. Reasonable speed limitations

of the various types of vehicles are used to calculate worst cases for each (Table 2). For

Meters/
KPH Meters/Sec Frames/Sec Frame

Ground 60 16.6 10 1.66

Ship 50 13.8 10 1.38

Air 1000 277.7 10 27.7

VEHICLE MOVEMENT LIMITATIONS
TABLE 2
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example, if a ground vehicle travels at 60 kilometers per hour, then it travels 1000 meters

per minute or 16.6 meters per second. At a frame rate of 10 frames per second, this is

equivalent to 1.66 meters per frame. Since the vehicle positions are updated each time

before the frame is displayed, they are also checked for a collision. A ground vehicle would

have to travel at approximately 1000 KPH to completely traverse two gridsquares in one

second. Consequently, the movement across more than two gridsquares within one tenth of

a second, one frame, is impossible (Figure 1). The distance for the first level check is used

125 meters

125 meters

1.6 m

radius of 0
movement"

Figure 1. Vehicle Movement

as a rough approximation for proximity of other vehicles. The only gridsquares that can be

reached by the vehicle within one frame are those that are checked as shown in Figure 2.

The limitation of the 100 meters ensures an efficient culling for collision detection and

allows the time needed for collision response.

The collision detection itself is done by determining if one object has

interpenetrated another. If an interpenetration has in fact occurred, then it must be resolved.

The most obvious way to determine if a collision has occurred is to create a boundary box

around each object and if that box gets penetrated, then a reaction must occur. The
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Figure 2.Possible Gridsquares

penetration boundary can also be done by surrounding each object with a sphere. Both

methods are simple to implement, but the sphere implementation is slightly faster.

Therefore, bounding spheres serve as the outer bounds of the objects in this work.

Neither method calculates the penetration point. The radius used in the spherical

check is the maximum distance from the center of the object to the furthest outer surface.

The boundary box uses a maximum and minimum value, not necessarily the value at that

part of the object being penetrated. Consequently, in the collision response portion of the

system, the actual object's penetration point is determined. A slightly smaller value than

the actual radius of the object is used for the radius. This produces a more realistic collision

possibility since it increases the likelihood of an actual collision of the checked objects and

not just their spheres. Once the collision has been detected, the function to determine the

extent of damage and the results to be displayed is run.
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D. COLLISION RESPONSE

Collision response is handled by a function which takes in the two involved objects

as arguments and determines the impact of the damage upon the them. For example two

tanks colliding, each going five miles per hour, would have a much smaller impact than a

tank going 40 miles per hour hitting a stopped jeep. An artillery round striking the ground

leaves a large crater while the same round striking a tank would destroy the tank and have

no effect on the ground. Many variables must be taken into account to include speed and

angle of impact, mass of the objects involved, explosive potential, resistance to destruction,

moldability of the objects, rigidity and fabricated spring forces which determine the

bouncing-off effect and likelihood of survivability. Each of these factors is weighted in

order to provide as realistic an effect as possible while maintaining the environment in real-

time. For example, if a tank runs directly over a tree quickly, there should only be a stump

remaining if the vehicle operator were to turn around the tank and look back to where he

had just driven from. Additionally, if two tanks were to collide at 20 miles per hour, there

would probably be a large dent in both along with a severe bouncing effect if the angle of

impact was small. If the angle of impact was severe, then both tanks would sustain a large

amount of damage. In a real situation, there would be several visual effects that would

occur simultaneously in response to the impact. Special effects such as smoke and fire are

included.

1. Fixed Objects

The implementation of collision response requires the input of the two objects

involved. A basic assumption that was made was that collisions between more than two

objects do not occur very often. Therefore, the collisions checks and responses in this

system only involve two objects. It was felt that this was a valid and justified assumption.

Associated with each object, both fixed and moving, are radii that determine the sphere size

for the collision checks. For a moving vehicle colliding with a fixed object, there are only

a few basic cases:

14



1. the vehicle is undamaged and destroys the fixed object;
2. the fixed object is damaged and the vehicle is also or
3. neither the fixed object or the vehicle are damaged.

If the fixed object is large and heavy, like a building, then the vehicle is probably going to

be destroyed. Whereas if the fixed object is small and light, like a small tree or stop sign,

the fixed object will be destroyed. If a jeep runs over a bush, neither one of the objects will

be damaged. There are a few cases where both the vehicle and the fixed object will be

damaged such as a tank hitting a house. Most of the damage would be to the house, but the

tank would suffer in the collision also. A more complex issue arises when two moving

objects impact with each other.

2. Moving Objects

In the case where two moving objects impact, all of the physically-based

modeling characteristics of each object must be considered. The collision point in three

dimensions must be known to create realistic responses in the involved objects. The

collision point determines the point for any type of bending, crumpling and molding.

Moreover, if the point of collision is part of a wall that is interconnected to several other

walls then there will have to be corresponding responses in those interconnected walls. The

only way to find the collision point is through ray tracing. The ray does not bounce around

forever but only long enough to give the x, y and z coordinates of the first collision point,

if one exists. Normally, ray tracing is expensive computationally. However, only the first

intersection point for each ray is computed; therefore, the expense is lessened considerably.

A form of backward ray tracing is used with the origin of the first ray being the origin of

the object itself and the origin of the second ray being the possible intersection point. Two

rays are needed for different portions of the program.

A ray shot from the center of the moving object towards the center of the object

it collided with determines the possible point of collision. This is done since the collision

detection portion returned a true for the collision along with the two objects involved. This

15



collision may simply be between the spheres of the two objects though and not the actual

objects themselves. This possible intersection point, produced from the first ray, is where

a collision would occur on the surface of the sphere used for the collision detection part of

the algorithm. Due to the possibility that the actual object was not penetrated, the possible

collision point is used as the origin of the second ray.

The second ray determines if one of the object's actual polygons was penetrated.

This second ray is the ray used in Haines algorithm. This algorithm from Glassner [Glas89]

was adapted for use in the collision point determination. It involves running through the list

of polygons that comprise the object. Each polygon is checked until an intersection is

found. Since this portion of the program is only done if there is a collision between the

spheres, the ray is shot through the planes that make up the object's polygons until the

actual intersected polygon is found. If no intersection is found once all of the polygons have

been checked, then only the spheres were penetrated and not the objects themselves. Figure

3 shows this in 2D. So although several planes which extend indefinitely from the plane of

the polygons could be intersected, only one polygon will be intersected. In two dimensions,

if we imagine that the object is a box as in Figure 4, then the front face is intersected.

However, if the plane for the upper side were extended indefinitely then the side plane

would be intersected also. When the actual polygon on the upper side is checked no

intersection is found. Consequently, the algorithm would have to be run again until an

actual polygon intersection were found in the front face. Figure 4 shows a 2D

representation of this.
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Figure 3. 2D Collision Detection
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Figure 4. Object Collision Point Determination
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If the plane that the polygon lies in is intersected then the polygon itself must be

checked for an intersection. This is where Haines' adaptation of the Jordan Curve Theorem

is implemented. The Jordan Curve Theorem simply states that if a point lies inside a

polygon and a line is drawn from that point to the outside of the polygon then it will

intersect the polygon edges an odd number of times. Conversely, if the polygon edges are

intersected an even number of times by the ray from that point, then that point lies outside

the polygon. Therefore, if the polygon is intersected an odd number of times by the second

ray shot from the saved intersection point then the intersection point lies within the polygon

and is in fact the actual collision point (Figure 5). If the point is not inside the polygon, then

PossibleCollision

Possible Collision Point
Point

Odd number of intersections Even number of
Inside Polygon Intersections, Outside

Figure 5. Intersection Check

another plane must be intersected also and the same checks must be run for the remaining

polygons. The planes are computed based upon the first three vertices of the individual

polygons. Three points are all that are needed to compute a distinct plane. The remainder,

if any, of the vertices are used in the algorithm to determine the edges of the polygon and

the number of crossings of the polygon edges for the second ray shot from the saved

intersection point. The plane computed from the first three vertices of the polygon along

with the saved intersection point and the vertices of the polygon are all that are required to

compute the number of crossings of the polygon edges. The algorithm is efficient since all

edges are either rejected with no intersection at all or accepted as intersected. The algorithm

also avoids the problem of points that lie exactly ua the edge by placing those points either

inside the checked polygon or outside it. The algorithm is as shown in Figure 6, using the

following list of terms:
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1. U' and V' - Perpendicular Coordinate axes for the plane of the polygon.
2. n - the variable number of the vertex from 0 to NV-1.
3. NV - Number of Vertices that comprise the current polygon.
4. SH, NSH - Sign Holder, Next Sign Holder.
5. a, b - Ordered variable vertices, a = 0 to NV-I and b = (a +1) mod NV.
6. NC - Number of Crossings.

For the Number (NV) of vertices [Xn Yn Zn], where n = 0 to NV-I, project
these onto the dominant coordinate's plane, creating a list of vertices (Un, Vn).

Translate the (U,1') polygon so that the intersection point is the origin. Call these
points (U'n, V'n).

Set the number of crossings, NC, to zero.

Set the sign holder. SH, as a function of V O, the I" value of thefirst vertex of the
first edge:[

Set to -I if V'O is negative
Set to +1 if VO is po. itivc.)
For each edge of the polygon formed by points (U'a, V'a) and (U'b,V'b), where

a = OtoNV-I, b= (a+1) mod NV:{

Set the next sign holder, NSH:{
Set to -I if V'b is negative.
Set to + 1 if V' b is positive.)

If U'a is positive and U'b is positive then the line must cross + U', so
increment NC.

Else if either U'a is positive or U'b is positive then the line might cross,
so compute intersection on U' axis:(

if U'a - V'a*(U'b - U'a)( V'b - V'a) > 0 then
the line must cross + U'. increment NC.}
Set SH = NSH.

Next edge.}
If NC is odd, the point is inside the polygon, else it is outside.1

Figure 6. ttaines' Algorithm

The key to making the algorithm work is to determine the dominant coordinate,

and to then work only in that coordinate's plane. This simplifies the process enormously

1. Glassner, An Introduction to Ray Tracing, p. 56.
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and allows for a much faster implementation in only two dimensions. Once that plane is

found, the program shoots a ray from the intersection point along the positive U' axis and

counts the number of edge crossings. This process is done for each edge of the polygon and

once all edges have been checked for an intersection by the ray, the total is tested to

determine if it is odd or even. This collision point, since there must be one, is then used to

determine the proper response to the transient event.

3. Reactions

The proper response is performed by comparing the two objects involved in the

collision to each other. The characteristics of each are compared to the other. The first

check is to determine whether or not the objects involved are fixed or mobile. Once that is

known the proper reaction can be displayed. A few general guidelines are applied to all

collisions. The larger massed object inflicts more damage on the smaller massed object.

The fixed object has no ability to shift away from the point of contact and consequently

suffers more damage than a mobile object with the ability to spring away (Figure 7). A large

fixed object, such as a bunker or large rock, can withstand a much larger force of impact

than a small fixed object. A large fixed object also inflicts much more damage to the mobile

object that struck it. A small mobile object suffers damage if it is hit by a large mobile

object at angles that are near multiples of 90 degrees. At smaller angles, even small vehicles

are able to bounce away from the impact with a minimum of damage. Consequently, the

collision response is limited to a few instances. For fixed objects, the responses include

several degrees of damage, based upon the speed and mass of the colliding object. Up to

three levels of damage plus the original undamaged fixed object are available for display

after a collision. For mobile objects, the response depends upon the angle of impact as well

as the speed and mass of the two involved objects. The mobile object reacts by either

bouncing away or being destroyed and exploding. In the special case of contact by

munitions, the only response is an explosion. The constants are checked in order of size,

i.e., constantl> constant2 > constant3 > constant4. The algorithm is as shown in Figure 8.
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Iffixed object[
if mass of colliding vehicle >= constant] then

damage level == HI;
else if mass of colliding vehicle < constant] && >= constant2 then

damage level == MED;
else if mass of colliding vehicle < constant2 & & > = constant3 then

damage level == LOW;
else if mass of colliding vehicle <= constant3 then

damage level == NONE;

Else if mobile object and other object is fixed then[
Check for mass offixed object;
if large and mobile object is moving quickly

Kill mobile object;
if small or moving slowly(

continue on course;
damage fixed object;
decrease speed of mobile object;}

)
Else if mobile object and other object is also mobile[

Check for angle of impact;
If ((angle >=85 && <= 95)// (angle >= 175 && angle <= 185)//

(angle <= 5)// (angle >= 355)// (angle >= 265 && angle <= 275)){
if (speed of colliding vehicle > constant)[

Kill both;)
else

Stop both;}
Else {

Bounce off each other;
Diminish speed of both;

Figure 8. Collision Response Algorithm

The limited number of options available for the response to the collision keep the

response fast to maintain the real-time criteria. The collision point itself is saved to pass to

another function along with the direction of travel and the object type. This function's

implementation can be seen in [Mona9 1]. That work uses all of the physical characteristics

of the object to create the more accurate response that goes beyond the scope of this work.
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IV. RESULTS

A. PERFORMANCE

The performance of the overall system is not affected by the addition of the collision

detection and response modules. The response time for detection is adequate for fixed

objects regardless of the speed of the moving objects. However, for collisions between two

high speed objects, collision detectio:- "s sometimes too slow. When vehicles are traveling

too quickly, i.e., faster than about 216 KPH each, they pass through each other rather than

colliding. For example: two tanks, each with a radius of three meters, would have to travel

six meters in one frame to do this. This is a totally unrealistic speed for a ground or water

vehicle but not for an air vehicle as shown in Table 2. This is due to the inability of the

functions to calculate the positions of both vehicles quickly enough to realize that a

collision was supposed to have occurred. A time interpolation of the movement of the

vehicles would solve this. At speeds below 216 KPH, the detection functions between two

moving objects work.

B. ACHIEVEMENT OF GOALS

The collision detection and response is done in real-time. Real-time is defined as

about ten frames per second. This is the speed of NPSNET-1, and the speed of NPSNET-2

is not degraded by the addition of the detection and response modules.

NPSNET-2 does not detect all collisions; however, it detects the vast majority. All

collisions between fixed and moving objects are detected and give a response that is done

in real-time and in a realistic manner. The collisions between moving objects is probably

adequate due to the normally slow speed of tactical vehicles. The effects are realistic and

are close to what would occur in the real world if the collisions actually occurred.
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The system is compatible with future upgrades of hardware assuming those upgrades

make use of the GL libraries that are currently used. If those libraries change then the

functions contained within them should also change and remain compatible with current

hardware.
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V. CONCLUSIONS

A. MERITS OF THE WORK

NPSNET-2 is compatible with SIMNET which was one of the original goals.

Realism for simulation is maintained by allowing correct physically-based modeling

characteristics to occur in response to transient events within the virtual world. The real-

time collision detection and response allow the user to interact with the virtual world and

with othe r networked players. The speed of the entire system is not affected by the addition

of the collision detection and response.

B. ASSUMPTIONS AND LIMITATIONS

One assumption was made to speed up and enhance the program. It is that only two

objects or vehicles are involved in any one collision or explosion.The assumption is

reasonable since collisions rarely occur between three or more objects.

Getting an algorithm fast enough to handle real-time collision detection and response

was difficult. The collision detection and response for fixed objects was simpler since there

were fewer fixed objects and their position remained a constant. However, the moving

objects were much more difficult to track for collisions since they constantly moved and

there were many more vehicles in the virtual world than the average number of fixed

objects per gridsquare.

One of the system's limitations is that it cannot detect collisions between two quickly

moving objects as stated in Chapter IV. Time interpolation needs to be integrated into the

system in order to detect all collisions between two moving objects. Moreover, the system

will only detect collisions between two objects, whether they are moving or not. Therefore,

minor limitation is that collisions between three or more objects are not checked for
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simultaneously. An implied limitation is that all objects in the world are spherical, when in

fact, few are. Detections are done on spheres and therefore have a margin for error on the

virtual objects. The final limitation is that fixed objects that are large, in comparison to the

size of the gridsquare, and are located near the borders of gridsquares may not be detected

until after they have been penetrated (Figure 9). However, there are only a small number of

these objects in the virtual world.

Vehicle o L ated
in this Gri square

125 Metersuh sar

Figure 9. Border Object Limitation

C. IDEAS FOR FUTURE PROJECTS

Only a few of the physically-based modeling characteristics were used in determining

the response to collisions. Obviously, the remainder of those characteristics can be added

for more realism. Actual physics laws were also avoided due to their computational

intensity. However, for every area that is added to obtain more realistic affects there is a

cost in time. Too many will cause the real-time constraints to be exceeded and therefore

cost more than the system can afford. Faster hardware and/or software will allow these

constraints to be met. Future work is needed to include all of the physically-based
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characteristics. Additionally, a time interpolation of vehicle movement is needed in order

to prevent vehicles from passing through one another.
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VI. APPENDIX A

This appendix contains snapshots of the screen from the virtual Fort Hunter-Liggen,

including collision responses for several cases.

Figure A.1-A Typical Scene From Inside a Vehicle in the Virtual Hunter-Liggett
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Figure A.2-Imminent Collision Between Two Vehicles

Figure A.3-Broadside Collision Result, Explosion and Destruction
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Figure A.4-Imminent Collision with Tree

Figure A.5-Slow Speed Collision with a Tree
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Figure A.6-lligh Speed Collision with a Tree

Figure A.7-Imminent Collision with Tower
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Figure A.8-Slow Speed Collision with Tower

Figure A.9-High Speed Collision with Tower
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